

WJEC Chemistry A-level

3.2: Redox Reactions

Detailed Notes Welsh Specification

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Redox Titrations

Redox reactions can be used in **titrimetric analysis** to analyse reactions both theoretically and when carried out in practice. These redox titrations depend on the **transfer of electrons** between the two reacting species in solution. **Half equations** can be written for these transfers to work out the **ratios** between the reacting ions.

These calculations can be used before a reaction to work out the **theoretical amount** of reactant required in a reaction. This can then be compared to the actual amount required from a practical experiment.

Constructing half equations

Half equations are used to show the **separate oxidation and reduction** reactions that occur in a redox reaction. They must be **balanced** in terms of the species present and the charges of the species on both sides of the equation.

In order to help write the equations, there is a useful method:

- 1. Balance all species excluding oxygen and hydrogen.
- 2. Balance **oxygen** using H_2O .
- 3. Balance **hydrogen** using H^+ ions.
- 4. Balance **charges** using e⁻ (electrons).

Following this method ensures the half equations are correctly balanced.

Example: Consider the reduction of $Cr_2O_7^{2-}$ to Cr^{3+} :

	$\operatorname{Cr}_2O_7^{2-} \to \operatorname{Cr}^{3+}$
Balance chromiums:	$\operatorname{Cr}_2\operatorname{O}_7^{2-} \to 2\operatorname{Cr}^{3+}$
Balance oxygens:	$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$
Balance hydrogens:	$Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$
Balance charges:	$Cr_{2}O_{7}^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ +7H ₂ O

Potassium Dichromate(VI)

This compound is an **oxidising agent** used commonly in the **oxidation of alcohols**. In this process, $Cr_2O_7^{2-}$ is **reduced** (gains elections) from to Cr^{3+} . A half equation for this reduction was deduced above:

 $Cr_{2}O_{7}^{2} + 14H^{+} + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_{2}O$

🕟 www.pmt.education

▶ Image: Second Second

Potassium Manganate(VII)

This compound is also an **oxidising agent**. MnO_4^- gains electrons and is **reduced** to Mn^{2+} ions. A half equation for this reduction reaction can be written as:

Thiosulfate

This compound is a **reducing agent**. $S_2O_3^{2-}$ donates electrons to become **oxidised** to $S_4O_6^{2-}$ ions. A half equation for this oxidation can be written as:

Combining Half Equations

Half equations can be **combined** in order to determine the overall redox reaction. In order to do this, the number of electrons must be the **same** for both half equations. This can be done by scaling up the number of moles.

The **molar ratio** is crucial for redox titration calculations and different combinations of these half equations produce different molar ratios.

www.pmt.education 🛛 🖸 🗹 🕑 PMTEducation

 $(c) \oplus (b)$

Cu²⁺ and I⁻ Redox Reaction

In this reaction, I^{-} isn't a strong enough reducing agent to completely reduce the Cu²⁺ ions, so they are only reduced to Cu⁺ ions. Therefore, the reduction reaction is a bit different. *Example:*

The amount of iodine produced can be determined by titration with **sodium thiosulfate** solution of **known concentration**, since the following redox reaction takes place:

$$2S_2O_3^{2-} + I_2 \longrightarrow 2I^- + S_4O_6^{2-}$$

Clearly the **reacting molar ratio** of thiosulfate to iodine is 2:1 so if you **calculate the amount of sodium thiosulfate** required to react with all the iodine, then you can **calculate the amount of iodine** which was produced in the first reaction.

Redox Titrations

Redox titrations are carried out using a very similar method to acid-base titration where the concentration of an unknown substance can be **accurately determined** by measuring it against a **standardised titrant**.

A common example is the reaction between a standard solution of **potassium permanganate** (KMnO₄) and a solution containing an unknown concentration of Fe^{2+} ions. When at the neutralisation point, the solution of KMnO₄ will turn from **bright purple** to almost **colourless** meaning there is a very clear endpoint to the titration.

Concordant results from redox titrations can then be used in redox calculations for the substances involved. Titre values are said to be **concordant** if they are within **0.20** cm³ of each other.

🕟 www.pmt.education

